반응형

Closed Loop Heat Transfer System  첫번째에 이어서  두번째 입니다.

아래의 열전달 유체의 성질들은 1탄에서 언급한 Factor 들과 상호작용 합니다. 

 

 

1. 제조업자 (Manufacturer)

각각의 제조업자는 열전달 유체 목록이 한정되어 있고, 유효성도 특정 지리학적 지역에 한정 될 겁니다.

 

2. 유체종류 (Fluid type)

water-based chemicals, ethylene 또는 propylene glycol solutions, refined petroleum products,

synthetic organic compounds 그리고 silicones 를 선택할 수 있습니다.

 

3. 유독성 (Toxicity)

Ethylene glycol 은 환경으로 쏟거나 누설되는걸 방지하기 위해 Containment를 포함하여 엄격한 통제를 받습니다.

일부 열전달 유체들은 섭취 (예를들어 Food grade) 또는 우발적인 접촉이 안전한지 고려됩니다.

그리고 식품과 제약공정에 이용하기에 더 적합 할 수 있습니다. 

섭취와 피부, 흡입 접촉에 대한 독성을 고려합니다.

 

4. 온도범위 (Temperature range)

제조업자들은 보통 그 유체가 사용될 수 있는 이상의 온도 범위를 지정합니다. 

그리고 점도와 증기압을 고려해야 합니다.

 

5. 성능저하 (Degradation)

특히 150 ℃ 이상에서 합성 유기 유체의 성능저하 

저하율은 10 ℃ 가 올라갈때 마다 대략 두배입니다.

Silicone 유체들은 열적 성능저하를 겪으면 안됩니다.

특히 60 ℃ 이상에서 사용할때 Glycols 을 산화시킵니다.

유기산이 형성되고 억제제(inhibitors)는 결국 감소하여 유체는 부식성이 될 겁니다.

 

6. 점도 (Viscosity)

점도는 펌핑유량과 열전달계수에 영향을 미칩니다.
작동 범위내 가장 낮은 온도에서 10 cP 보다 더 크지 않은 점도를 가지는 유체를 선택해야 합니다.
더 높은 점도의 유체는 난류를 형성하지 못할 겁니다.
또한 펌핑 시스템은 상온에서 작동 범위 전체에 걸쳐 유체를 처리할 수 있어야 합니다.
(예, 시스템 start-up 할때)
 
7. 증기압 (Vapor pressure)
의미상 closed liquid system은 끓는점(boiling point) 위에서 작동합니다.
그러므로 시스템 압력은 운전중 온도 범위의 윗부분에 있는 열전달 유체의 증기압보다 높아야 합니다.
비록 시스템은 모든 압력을 포함하도록 설계될 수 있지만, 
표준방식은 대략 9.2 kg/cm2g (1000 kpa) 압력으로 제한 합니다.
Expansion tank 와 같은 (주변보다)높은 요소로부터 압력손실과 정압(static pressure)이 있어도
5 kg/cm2g (600 kpa) 아래의 증기압을 가진 유체를 선택하는게 경험적으로 통합니다.
 
8. 열적 특성 (Thermal properties)
열용량, 열전도율, 밀도 그리고 점도의 온도 의존 특성은 시스템 설계와 함께 열전달 계수를 결정 합니다.
 
9. 인화점 (Flash point)
(공기 내에) 유체의 증기가 발화하기 쉬운 농도로 가장 낮은 온도에서 액체 표면 위에 존재하는 것입니다.  
인화점은 시스템이 Hazardous area design 특성이 요구되는지 아닌지 판단하는데 쓰입니다. 

 

반응형
반응형

화재안전 관점에서 가장 중요한 물질의 성질중 하나가 인화점(Flash point) 입니다. 

 

인화점의 정의는 어떻게 될까요?

 

1 atm (760 mmHg) 에 있는 공기와 평형 조건에서 

충분한 양의 기체가 가연혼합물로 만들어지는 지점의 온도로 정의 합니다.  
인화점은 막힌 용기(Closed container)나 열린 용기(Open container)를 이용해서실험적으로 측정 할 수 있습니다.  
막힌 용기의 값이 보통 열린 용기 결과 값보다 몇도 정도 더 낮습니다. 이것은 대단히 중요한 안전 관련 결정들을 할 때 선호되어 이용합니다. 

 

 

폭발하한계(Lower Explosive Limit, LEL)는 인화점(Flash point)에서 공기와 함께 있는 가연성 물질의 농도(mole % 또는 volume % 입니다. 

 

순물질(pure material)의 인화점은 MSDS(material safety data sheets)나 책들, 인터넷 등에 찾아보면 바로 나옵니다. 그런데 혼합물질은 찾기가 쉽지 않습니다. 그래서 준비한 이슈가 개별적인 물질들의 인화점을 알고 있을때 혼합물질의 인화점을 어떻게 쉽게 예측할 수 있는지 알아 보는 겁니다. 알콜과 물이 섞인 용액을 예를들어 설명 하겠습니다.

 

두 성분 혼합물의 인화점은 어떻게 예측 할 수 있을까요?

 

인화점을 추측하는 절차는 vapor-liquid equilibrium(VLE) 계산과 굉장히 비슷합니다. 

 

Ideal mixure의 경우, Raoult's Law의 VLE 예측법을 이용

Non-ideal solution의 경우, 활동도 계수(activity coefficient)를 이용

 

물과 알콜같은 극성물질(polar compound)는 non-ideal 입니다. 

그리고 만족스런 결과를 위해 활동도 계수를 이용해야 합니다. 

 

ideal solution에도 활동도 계수를 설정합니다.

 

두 성분 혼합물의 인화점을 예측하는 일반적은 식은 아래와 같습니다. 

 

 

x1 = 몰 분율 (x1+x2 = 1 이 되어야 합니다)

y1 = 활동도 계수

P = 성분들의 vapor pressure

Pfp = 순 물질의 인화점에서의 vapor pressure

 

 

물과 같은 인화성 물질이 아닌것은 term을 지워버리면 됩니다. 그러니까 알콜을 첫번째 1부분에 넣고 2번은 지워 버리면 되는거죠. 

vapor pressure는 Antoine Equation을 이용해서 찾으시면 됩니다. 

 

 

위의 식 출처 : Journal of the university of chemical technology and metallurgy

반응형

+ Recent posts