반응형

예전에 Refrigeration system을 simulation 했었는데.. 그때 생각이 나서 다시 한번 공부하면서 포스팅 해볼려고 합니다.

먼저 간단한 설명과 용어부터 차근차근 시작해 볼께요.. 책을 찾아보면 나오는것들이니 편안하게 보세요.

 

 

[packaged refrigeration systems]

 

Refrigeration systems

냉동시스템은 natural gas processing과 petroleum refining, petrochemical, chemical 산업에 흔하게 사용됩니다.

 

refrigerant 선택의 조건은 아래와 같습니다.

 

1. 온도 요구조건

2. 용이성 (availability)

3. 경제성

4. 이전의 경험

refrigerant는 예를들어 natural gas processing plant 에선 ethane 과 propane 에 가깝게 존재 할 거고, 반면에 olefins plant 에선 ethylene 과 propylene 이 손쉽게 이용될 수 있습니다. propane 또는 propylene은 아마 ammonia plant 에는 적당하지 않을 겁니다. 왜냐하면 오염물질의 risk 때문입니다. Halocarbons는 불연성 특징 때문에 광범위하게 사용되고 있습니다.

 

Accumulator

- 액체 냉매 저장을 위한 vessel.

 

Bubble point

- 기액 경계면의 절대외압과 같은 액체 증기압에서의 온도.

 

Capacity, refrigerating system

- evaporator로 들어가는 냉매와 evaporator에서 나가는 냉매 사이의 전체 엔탈피 차로 만들어진 냉각 효과.

 

Chiller, Evaporator

- 공정 stream 에 의해 액체 냉매가 증발되는 열교환기.

 

Compression ratio

- Compressor 흡입구 와 배출구 절대압력의 비율.

 

Condensor

- 적당한 압력까지 압축된 냉매가 있는 열교환기, 기체는 cooling medium 의 열 제거로 응축된다.

 

Cooling medium

- 응축 또는 과냉각 하는 동안에 냉매의 온도를 더 낮게 (상태의 변화가 있거나 없거나) 하는데 사용되는 물질.

 

Effect, refrigerating

- Refrigeration system에서 냉매에 의해 열이 제거되는 비율. 이것은 두 개의 지정된 열역학적 상태에서 냉매의 specific 엔탈피 차와 동일하다.

 

Expansion valve

- Evaporator 또는 Chiller로 가는 냉매의 흐름을 조정하기 위한 밸브.

 

Flash gas

- 컨트롤 밸브와 같은 압력을 줄이는 장치에 의해 냉매의 순간 증발로 인한 가스.

 

Frost Plug

- 서리의 쌓임으로 vessel 내의 액체 level을 나타내는 insulated vessel 측으로 부터 돌출된 작은 직경의 closed nozzle.

 

Halocarbons

- fluorinated 와(또는) chlorinated hydrocarbons로 구성되는 냉매군.

 

Hot gas bypass

- 최소 부하 조건에서 시스템 작동의 일관성을 유지하기 위해 warm discharge gas를 chiller로 재순환 시킨다.

 

Liquid refrigerant receiver

- 냉매 회수 할때,  system 의 기능 그리고 액체 냉매의 저장을 위한 적절한 액체 냉매의 용이성을 보장하도록 제작된 vessel.

 

Refrigerant

- 냉동 시스템 내에서 (낮은 온도/낮은 압력에서 열을 흡수하고, 높은 온도/높은 압력에서 열을 버리는) 열 전달에 사용되는 유체.

 

Ton of refrigeration

- 24시간 내에 얼음 1 ton을 녹이는데 요구되는 열의 양. (= 12,000 Btu/hr at 32°F)

 

반응형

'System' 카테고리의 다른 글

냉동사이클 / Refrigeration cycle  (0) 2016.04.07
Compressed air system  (0) 2016.04.05
반응형

너무 간단한 내용들만 포스팅 하는건 아닐까? 란... 생각이 갑자기 떠오르지만.. 기본에 충실해서 포스팅을 해볼께요.

 

Refrigeration Cycle

 

냉동효과는 아래의 cycle을 통해 얻을 수 있어요.

  • vapor compression-expansion
  • absorption
  • steam jet (water-vapor compression)

pressure-enthalpy(P-H)diagram을 통해 냉동 cycle을 4가지로 나눌 수 있어요.

  • expansion
  • evaporation
  • compression
  • condensation

이제 FIG.14-2를 통해서 4가지 step에 대해 알아 볼께요.

아래에 나오는 압력과 엔탈피 기호는 대문자를 사용하였으며 아래첨자를 소문자로 사용하여 구분함.

(첨부한 그림과 조금 다름)

 

1. 팽창 단계

 냉동 사이클의 시작점은 액체냉매가 있는 지점이에요. Pont A는 포화압력 Pa 와 엔탈피 Hla 에있는 액체 bubble point에요.

이 단계에서 압력과 온도는 control valve를 통해서 flashing 되는 액체로 인해 압력 Pb로 떨어져요.

압력 Pb는 공정에서 요구하는 냉매의 온도(Tb)가 얼마냐에 따라서 결정되죠.

Point B에서 포화액체의 엔탈피는 Hlb 에요. 반면에 포화증기 엔탈피는 Hvb죠. 이 단계에서 control valve를 통과(Point A->B)할때 에너지의 교환이 없어요. 이 공정은 등엔탈피(isenthalpic)에요. 그래서 control valve outlet에서의 전체 stream 엔탈피는 inlet에서의 엔탈피(Hla)와 같죠.

Point B에는 액체와 기체가 동시에 존재하는데요. 기체 형태의 양을 측정하기 위해선 식을 좀 만들어야 해요.

압력 Pb, 엔탈피 Hlb 에서의 액체 분율을 X라고 하고, 엔탈피 Hvb로 팽창 과정에서 형성된 기체는 1-X 라 해요.

heat balance 와 형성된 액체의 분율을 식으로 나타내면,

(X)Hlb + (1-X)Hvb = HlaX = (Hvb - Hla) / (Hvb - Hlb)(1-X) = (Hla - Hlb) / (Hvb - Hlb)
 

2. 증발 단계

 팽창 과정에서 형성된 기체는 이 공정에 어떠한 냉각을 제공하지 않아요. 열은 냉매의 액체부분이 증발함으로 흡수되요.

일정 온도, 일정 압력의 단계에요.(Point B->C)

Point C에서 기체의 엔탈피는 Hvb에요.

물리적으로 증발은 evaporator나 chiller라 불리는 열교환기에서 일어나죠. 냉매의 효과를 정의하면

 

Effect = Hvb - Hla

 

냉동용량(= refrigeration duty)은 공정에 의해 evaporator나 chiller에서 열이 흡수되는 전체 양이에요.

일반적으로 "tons of refrigeration" 또는 Btu/unit time 으로 표현되요.

냉매의 flow rate는

 

m = Qref / (Hvb - Hla)

 

3. 압축 단계

 냉매 기체는 포화압력 Pc에서 chiller를 떠나요. Hvb의 엔탈피에서 대응온도(corresponding temperature)는 Tc와 같아요.

이 point에서의 엔트로피를 Sc라 해요. 이 기체들은 line C -> D'를 따라 등엔트르피적으로 Pa로 압축되죠.

압축된 냉매가 Pb에서 Pa로 변화 할때의 등엔트로피(ideal)의 일(work)은 Wi,

 

Wi = m(H'vd - Hvb)

 

H'vd의 양은 Pa, 엔트로피 Sc에서의 냉매 성질들로 측정되요. 냉매는 이상유체(ideal fluid)가 아니고, compressor도 이상적으로 작동하지 않기 때문에 등엔트로피 효율(ni)은 압축공정의 비효율적인것을 보상하여 정의되요.

실제 압축 일(W)은 아래의 식으로부터 계산 할 수 있어요.

 

W = Wi / ni = m(H'vd - Hvb) / ni

 

discharge에서의 엔탈피는

 

Hvd = [(H'vd - Hvb) / ni] + Hvb

 

압축 일은 아래와 같이 다르게 표현 할 수도 있어요.

 

GHP = W/2544.42544.4 Btu/hr = 1 hp

 

4. 응축 단계

 Pa, Td(point D)의 압축기에서 떠나는 과열된 냉매는 dew point 온도 Ta에서 거의 일정한 압력하에 냉각되요. 그리고 냉매 기체는 일정한 온도에서 응축되기 시작해요.

desuperheating 과 응축이 진행되는 동안에 증발과 압축하면서 냉매에 증가된 모든 열과 일은 반드시 제거 되야 해요. cycle이 P-H 선도에서 point A에 도달해야 완성될 수 있기 때문이에요.

응축용량(Qcd)를 계산 할 수 있는데, 응축열을 냉동용량에 추가함으로

 

Qcd = m[(Hvb - Hla) + (Hvd - Hvb)] = m(Hvd - Hla)

 

냉매의 응축 압력은 냉각 medium(air, cooling water, 다른 냉매)에 따라 조절되요. 냉각 medium은 냉동 cycle을 위한 열 흡수원이죠. compressor에서 나오는 기체는 과열되었고, 냉매의 응축 곡석은 직선이 아니기 때문에 condenser의 적절한 설계를 위해 과열방지와 일정한 온도의(항온) 응축은 반드시 고려되야 해요.

반응형

'System' 카테고리의 다른 글

냉동시스템 용어정리 / Refrigeration system  (0) 2016.04.07
Compressed air system  (0) 2016.04.05
반응형

Compressed air system에 대해 posting 할려고 하는데요... 지금 정리하는건 The Compressed Air Challenge Inc. 에서 제공하는 좋은 설계 사례들이라고 하네요. 생각을 정리 할 필요가 있을꺼 같아요.

 

1. 가장 낮은 실질적인 압력에서 air가 전달된다.

    말이 애매해서 다시 정리하자면, 높은 system 압력에서의 작동은 사용처 끝에서의 air 소비와 전체 에너지 소비로

    증가한다. 사용처 끝에서 최소한의 실직적인 압력으로 작동하고, compressor 후단 압력의 pressure drop을

    최소화한다. 그리고 compressed air의 소비, 누출양, 에너지 소비를 줄인다. 

    이렇게 하면 가장 낮은 실질적인 압력에서 air가 공급될 것이다.

 

2. Peak 수요를 예상할 수 있는 저장 및 자동 시스템 control을 이용한다.

   임의의 주어진 시간에 수요를 충족시키기 위해 필요한 compressor 수만 작동한다.

   "trim" control mode에서는 오직 한 대의 compressor만 작동한다.

 

3. 누출을 확인하고, 누출에 대한 비용을 이해한다. 가장 중요한 부분을 시작으로 모든 누출을 막는다.

 

4. Compressed air가 응용하는 곳에 최선의 대안인지 확인한다.

 

5. 만약 적절하다면 compressor 보다는 blower를 사용한다.

 

6. 정해진 시간에 air 100%를 요구하지 않게 적용되는 경우, 필요로 하지 않을 때에 air 공급을 멈춘다.

   운행중이지 않는 공정에 compressed air 공급을 끊는다.

 

7. 공정 모든 부분에 동시에 air가 필요하지 않을 것이다. Local secondary storage가 이점이 있는지 없는지와

   실제로 필요한지 측정하기 위해 flow 의 Peak 와 average rate를 분석한다.

 

8. compressed air를 전달하고 Control 하는(air compressor controls, primary and secondary receiver size,

   distribution piping size, in-line filter, regulators, lubricators) 장치의 타당성을 검토한다.

 

9. 각 장비나 공정을 위한 compressed air의 비용을 결정한다.

 

10. 에너지 대응감소가 실현되도록 compressor의 수 검토 및 작동과 그들의 control 설정치의 권고사항을 적용한다.

 

11. Compressed air 공급하는 측 인사가 공정 및 최종 사용과 관련된 의사결정에 관여되었는지 확인한다.

 

 

Source : Rules of thumb for chemical engineers

반응형

'System' 카테고리의 다른 글

냉동시스템 용어정리 / Refrigeration system  (0) 2016.04.07
냉동사이클 / Refrigeration cycle  (0) 2016.04.07

+ Recent posts