반응형

연소의 종류를 5가지 제시, 공통적인 안전대책은?

 

 - 확산연소(기체), 예혼합연소(기체), 분무연소(액체), 증발연소(액체, 고체), 분해연소(고체), 자기연소(고체), 표면연소(고체)

 

1. 확산연소 (기체)

가연물이 공기와 혼합되어 연소가이루어지는 현상으로 물질의농도가높은곳에서낮은 곳으로 이동하기 때문에 가연물과 공기가서로 혼합되어 연소되는 것이다.

- 증발연소, 분해연소, 표면연소가확산연소의 형태로 연소된다.

 

안전대책 : 1)가연물의 선소공급원과의 접촉을 차단, 2)가연성 혼합기 형성의차단(불활성 가스주입, 3)연소 하한계와 상한계 활용)

 

2. 예혼합연소 (기체)

기체 가연물이 공기(산소)와 미리 혼합된 가연성 혼합기를 형성한 성태에서 연소하는 현상이다.

- 전일차공기식 연소기, 내연기관 등이 이러한 연소를 한다.

 

안전대책 : 1)액화에 의해 화재 확산과 폭발이 일어나지 않도록 주의해야 한다. 2)예혼합된 가연성 혼합기의 가스에 대해 누출 여부를 정기적으로 확인한다. 3)연소기 전단에 차단밸브를 설치하여 누출, 역화 시 차단이 가능하도록 해야 한다.

 

3. 분무연소 (액체)

액체 연료를 미세한 입자로 분무함으로써 공기와 혼합되어 가연성 혼합기를 형성함으로써 연소하는 현상이다.

- 경유, 휘발유의 내연기관 등이 이러한 형태의 연소를 한다.

 

안전대책 : 1)적정 운전온도, 압력에 대하여 상시 확인 되어야 한다. 2)연소폭발을 이용한 연소장치의 경우폭발 압력 또는 연료 누출로 인한 화재 확산, 연소기 외부폭발 등이 일어나지 않도록 기계의 결함, 연료 누출 등을 상시 확인하여야 한다.  

 

4. 증발연소 (액체, 고체)

액체가 증발하며 공기와 환합되어가연성 혼합기를 형성하여 연소하는 현상이다.

- 파라핀, 등유, 경유, 휘발유 등의 인화성 액체의연소가 이에 속한다.

 

안전대책 : 1)포소확설비를 사용하여 표면에서의 화염적촉을차단하고, 냉각하여 소화한다. 2)액체가 증발되어 가연성 혼합기를 이루지 않도록 열과의 접촉을 차단한다.

 

5. 분해연소 (고체)

고체의 표면에서 열에 의해 물질이분해되며 가연성 증기를 발생시키고 이러한 가연성 증기가 공기와 혼합되어 가연성 혼합기를 형성함으로써 연소가 일어나는 현상이다.

- 나무, 석탄 등이 분해연소를 한다.

 

안전대책 : 1)고체가 열분해되지 않도록 열과의 접촉을 차단한다. 2) 분해가스의 화염과의 접촉을 차단한다. 3)작은 충격에도 분해되어가연성 증기를 발생시키는 물질의 경우 취급에 주의한다.

 

6. 자기연소 (고체)

물질이 내부에 산소를 포함하고 있어 외부에너지의 공급에 의해 외부의 산소공급 없이도 연소가 발생하는 현상이다.

- 니트로 화합물, 아조화합물 등의 자기 반응성 물질이 이에 속한다.

 

안전대책 : 1)열, 충격 등에 주의하여 반응에 필요한 에너지가 공급되지 않도록 한다. 2) 자기연소가 일어날 경우를 대비하여 주변의 연소물질과 이격하여 관리한다.

 

7. 표면연소 (고체)

물체의 표면에서 분자가 적열되며 산화반응을 하는 것으로 불꽃이 없는 연소이다.

- 코크스, 분상의 금속 등이 이러한 연소를 하며, 고체상태에서 연소한다.

 

안전대책 : 1)화재 시 다량의 물로 표면의 화심이 소화되도록 해야 한다. 2)재발화의유려가 있으므로 재발화 여부를 꼭 확인하여야 한다.

 

반응형
반응형

Centrifugal 펌프의 head 와 capacity의 관한 특징(drooping)에 대해 포스팅 하려고 합니다.

 

 

API 610 과 같이 많은 펌프 standard 들은 끊임없이 shut-off를 향해 올라가는 Head-capacity curve를 가진 펌프를 요구합니다.(capacity가 점점 줄어들면 head가 점점 올라가면서 결국엔 shut-off에 도달하는 curve)

그런데 high head, low capacity, single stage 펌프에서는 가끔 위와 다른 curve를 가지게 됩니다. 더 정확히 말하면 어떤 capacity에서 peak head를 가집니다. 이런 curve를 Drooping curve라고 합니다.

 

 

이제부터 왜 몇몇의 펌프에서 이런 drooping head-capacity curve를 갖는지, 언제 어떻게 이 문제가 발생 하는지, 이 문제를 예방하기 위한 point가 무엇인지 알아 볼까 합니다.

 

밝혀진 바에 의하면, Drooping curve를 가지는 동일한 두 펌프는 넓은 범위의 capacity를 가지고, boiler feedwater와 fire-main system과 같은 조건하에서는 작동되면 

안됩니다.(적용해서는 안된다)

병렬로 동작하는 두 펌프에서 drooping curve를 발견하는것은 드물고, 병렬로 배관이 연결되어 있지만 작동하는 펌프가 한 대라면(나머지는 spare) 드물게 발견 됩니다.

 

이것의 이점은 무엇일까요? 높은 효율 또는 낮은 가격 입니다. 일반적인 curve를 가진 펌프와 drooping curve를 가진 펌프를 비교해 보면, 동일한 사이즈의 펌프라고 했을때 drooping curve를 가진 펌프가 더 효율적입니다.(왜냐하면 head가 더 크기 때문에) 다시 말해 동일한 head를 보낸다고 한다면(동일한 효율로), drooping curve를 가진 펌프 크기가 더 작아도 된다는 말입니다.

 

 

펌프 design은 drooping을 피해 수정 할 수 있습니다.위의 그림 

Fig.2

 처럼 Vane discharge angle을 줄이면 impeller passages 안에 높은 fluid velocities를 만듭니다. 그래서 head와 효율이 감소 합니다. 같은 head를 얻기 위해서는 더 큰 impeller를 사용해야 합니다. 자, 그럼 이 펌프를 언제 사용 가능 할까요?

 

펌프 system은 surge가 발생되면 안되는데, surge가 발생 할 수 있는 3가지 조건이 존재 합니다.

여기서 포인트는 single pump system에서는 거의 발생되지 않고, 병렬로 작동하는 펌프에 흔하게 나타난다는 겁니다.

 

3가지 조건은 

첫째, 액체의 질량이 왔다갔다 변화 하는것.둘째, system의 일부가 back pressure energy를 저장하거나 주는것.셋째, system의 일부가 swing이 시작할 수 있는 충격을 제공 하는것.

 


Fig.3a

는 두 대의 centrifugal 펌프가 병렬로 설치 되어 있는 모습입니다. 

Fig.3b

는 펌프가 동일하고 각각의 펌프는 drooping curve를 가집니다. drooping curve 두개가 결합된 모습인데요. 세가지 문제점이 있습니다.

첫째가 shut off A 점의 head 보다 작동하는 D 점의 head가 큽니다. 그래서 다른 펌프가 연결되어 있다면 capacity 가 zero 인 head에서도 back pressure로 인하여 check valve를 열지 못합니다. 둘째로 두 대의 펌프가 C 점에서 작동하고 있을때, flow 수요로 throttle valve를 이용하여 부분적으로 닫아서 감소시키면 펌프는 E 점에서 작동합니다. 여기서 한 대의 펌프 또는 둘 다 F 점까지 이동시키면 head는 변동이 없는 상태에서 유량만 변경 시킬 수 있습니다. 이와 같은 형태의 펌프들은 load를 균등하게 공유할 수 없으므로 압력에 변동이 일어 날 수 있습니다. 세번째로 두 대의 펌프가 F 점에서 운전하고 있을대 throttle valve를 열어 한 대의 펌프 유량을 늘린다면 surge(조건 세번째)가 발생 할 수 있습니다. surge가 발생한다면 F 점에서 작동하는 펌프를 shut off 시킵니다.

 

 

이와 같은 system에서 surge를 예방하는 두가지 방법이 있습니다. discharge line 에 bypass를 설치하는 겁니다.

Fig.4a 

에 보이는 B 점에서 모든 흐름을 이동 시킵니다. 이러면 head가 증가하거나 flow가 감소하더라도 surge가 시작되지 않습니다. 그리고 bypass는 낮은 흐름에서 유체의 흐름이 열을 해소하기에 충분하지 않을때 overheating되는 걸 방지합니다.

다른 방법은 discharge line에 throttle valve 또는 orifice 설치하거나 각 펌프의 discharge가 만나는 line에 single valve를 추가 합니다. 이 방법은 

Fig.4b 

에서 보듯이 curve를 변화 시킵니다. 그런데 이 방법은 추가적인 pressure drop으로 더 많은 power를 필요로 합니다.

같은 범위에서 병렬로 작동하는 drooping curve를 가진 펌프가 낮은 용량에서 작동되는것은 바람직하지 않습니다.

 

결론, drooping curve를 가진 펌프를 사용하면 위에서 언급했던거와 같이 드물게 문제가 발생합니다. 하지만 그걸 잘 예방 한다면 더 좋은 효율과 자본을 절약할 수 있을 겁니다. 이런 점에서 고려해 볼 만 한것 같습니다.

 

그런데 요즘에도 이런 curve를 가진 펌프를 사용 할까요? 의문이네요.. 혹시 본다면 알려주세요~

 

Source : Chemical Engineering,Oct,15,1984,Head-vs.capacity characteristics of centrifugal pumps.

반응형

+ Recent posts